预测效果
基本介绍
光伏功率预测!五模型对比!Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量时间序列预测(Matlab2023b 多输入单输出)
1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!
2.Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量时序光伏功率预测 (Matlab2023b 多输入单输出),考虑历史特征的影响。
3.运行环境要求MATLAB版本为2023b及其以上。
4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。
程序设计
- 完整程序和数据获取方式:私信博主回复Matlab基于Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量时间序列预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
result = xlsread('北半球光伏数据.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 2; % 延时步长(前面多行历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
nim = size(result, 2) - 1; % 原始数据的特征是数目
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1 + zim, 1: end - 1)', 1, ...
(kim + zim) * nim), result(i + kim + zim - 1, end)];
end
%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征长度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
参考资料
[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501